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The Exact Dimensions of a Family of Rectangular

Coaxial Lines with Given Impedance

HENRY ]J. RIBLET, FELLOW, IEEE

Abstract—The potential problem associated with a capacitor
bounded by concentric rectangles may be solved by conformally
mapping a certain L-shaped region onto the upper half plane. In cer-
tain cases, the integral, by which the Schwarz~Christoffel transforma-
tion may be expressed, can be evaluated in terms of two elliptic inte~
grals of the first kind. Then the odd- and even-mode impedance of
the related transmission line is readily found.

INTRODUCTION

ECENTLY, Conning [1] has drawn attention to
a solution to this problem for the special case of
square concentric conductors given by Bowman
[2], [3]. Now, Bowman used the fact that for concentric
square conductors, the integral associated with the
Schwarz—Christoffel transformation is a degenerate
hyperelliptic integral that can always be expressed as
the sum of two elliptic integrals of the first kind. There
is, however, for a given characteristic impedance, a one
parameter family of concentric rectangular conductors,
containing the square conductors as a special case,
whose dimensions may also be found in this way.

TRANSFORMATION OF THE INTEGRAL

We are concerned with mapping the upper half of the
# plane onto the region of the z plane bounded by
OABCDE as shown in Fig. 1 provided by the trans-
formation

7= f“ M~/u du —
o VI —u)1+ au)(l + Bu)(1 — afu)

Following Cayley [4], we introduce two new param-
eters:

= (VB—+Va)/A A= (VB+ Va)/A
= (1 + vaB)/A = (1 — VeB)/A (2)

with A =~/(1Fa)(1Fp). Of course, E2++k” =N+N"=1,
and it is not difficult to invert (2) and find

()\-—k>2 8 ()\‘f‘k)z @)
- 2\ + B - 'Y + B )
If we now make the substitution
_ W\ 4+ kNt
Vi = 4)

V1= A4 /1 — R
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Fig. 1. Z, ¢, and u planes.
and write L=+/1—A% and K=+/1—F%? one may
readily follow Cayley [4] and find that
(A + au)(1 + Bu) = 4/(L + K)? (5)
and
(1 —w)(1 — apu) = 41 — £)/(L + K)* (6)
Moreover,

Vaudu = 20 + EY# dt/T-K- (L + K)? (7
so that the integrand in (1) may be written:

N + £)¥K — L)
200 — \)vV1—2-K-L

since L2—K2=(\"—k")#2. Thus

¢ dat
Z=u f {\/(1 Z )1 — %)

3 dt } @)
V=21 -2

TRANSFORMATION OF THE PATH OF INTEGRATION

It will be found that by squaring twice, (4) can be
inverted and ¢ can be expressed as

o A+ +pu ©
1+ au)(1 + Bu)
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Fig. 2. Paths of integration.

Equations (8) and (9) then permit one to determine the
relationship between points in the % plane and z plane
in terms of well-known functions.

Equation (9) maps the upper half of the # plane into
the right half of the ¢ plane where the points correspond-
ing to OABCDE are as noted in Fig. 1. In addition, the
critical points of (9) play an important part in the trans-
formation. They occur for u?=1/af where di/du=0.
‘We notice that they correspond to values of ¢=1/\ and
t=1/k, while A and B both correspond to t=1. The
problem of evaluating (1) as » traces out the real axis
in the # plane while avoiding the points O4 M+ BCD M~
E by means of small semicircles then becomes the prob-
lem of evaluating (8), while ¢ traces out the boundary of
the left half ¢ plane avoiding the points O—E as shown
in Fig. 1.

Now the integrands of the elliptic integrals in (8) are
not single-valued functions of ¢ in the ¢ plane. In order
to obtain unambiguous values for the integrals, it is con-
venient to plot the path of integration on the two Rie-
mann surfaces where the integrands are single valued.
If we denote R(\)=+/(1—13)(1—A2%?), then on the
R(\) surface of Fig. 2, R(\) is a single-valued function
of ¢ because of the branch cuts between —1/A and —1
and 1 and 1/X. The same is true, of course, for R(k) as
a function of ¢ on the R(k) surface of Fig. 2. Moreover,
the path of integration to be followed on both Riemann
surfaces is shown in Fig. 2. For the left-hand integral of
(8), the path of integration is entirely in the upper sheet
since no branch cuts are crossed and we agree to start
in the upper sheet; however, for the right-hand integral,
half of the path is in the lower sheet, denoted by a
dashed line.

THE INTEGRATION

Adopting the convention that in the upper half plane
of the upper sheet

f ldt/R(A) = K(\)
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we also have
f P a/ROY = K0 f TR0 = + KO
f TR0 = JEO).
Then
04 = Z(4) = f A/RO — f /R
— KO — K(B)
AB — f Paroy + [ ayroy — f P iR
1 1/ 1
— T ayre = 250
1/A
BC = f "a/RO — f "WRG) = —KO) — E()
cD = f " G/ROY — f )
= —jK'(\) — jK'(k)
DE = f Parey + [ ayroy) — f " iR
0 1/k )
_ f “URG) = 2K ()
1/%
20 = | da/RQ) — dt/R(k
J ame ~ [ aura
= —jK'(\) + jK' (k). (10)

In making these determinations, the integrals are line
integrals and the precise paths of integration, as shown
in Fig. 2, are taken into account. Moreover, R(\)
changes sign in going from a point in the upper sheet to
the point just below it in the lower sheet or in crossing a
branch cut in the same sheet.

THE GEOMETRY

Now in terms of real positive quantities when di-
rected upward or to the right,

04 = KQ\) — K(k) DC = K'(\) + K'(B)

AB =2K'(\) DE = 2K(k)

CB = KM\ + K(k) EO = K'(k) — K'(\). (11)
Thus given any two numbers 0 <a <8 whose product
af <1, we may in turn determine two numbers 2 <\ <1
that are the moduli of the complete elliptic integrals of

the first kind determining the dimensions of concentric



540

rectangles according to (11). Moreover these rectangles
are always realizable since K(\) is monotonically in-
creasing and K’(\) is monotonically decreasing with A.

THE CHARACTERISTIC IMPEDANCE

It now remains to determine the capacity per unit
length of the structure. It is well known that total ca-
pacity is invariant under conformal transformation so
we have to determine the upper hali-plane capacity of
section EA with respect to section BD (in the % plane of
Fig. 1). This may be accomplished by transforming the
upper half # plane into a rectangle by the transforma-
tion ¢=sn%w [3, pp. 58 and 59]. Then the upper half-
plane capacity C is

_ K'(k)
T OK(R)
where
2 (b — a)(d — ¢
(d—b)(c— a)

witha=—1/a, b=—1/B, c=1, and d=1/ap. So,

o B —ad) ”
B+ )2

The characteristic impedance Z, of the transmission line
is then given by

Z —w—%m[{k K'(k
0 — 4K’(ko) - ° ( 0)/ ( 0)~

(13)

Now the two parameters o and 8 will not determine
all concentric rectangular coaxial sections, but if we
specify the characteristic impedance, (13) determines
ko, and (12) then defines a one parameter family of
rectangular coaxial lines with the given characteristic
impedance. If 8=1, the rectangles become concentric
squares and the solution of Bowman results. Since &,’2
=1—k,% (12) becomes

al +6)°
Bt + a)?

14
0 =

(14)

Since &, <1, it follows readily from (14) that for 8>0,
there is always an « such that 0 <a<f and, from (12),
that ¢f <1. Thus in (12) or (14) 8 may be any positive
number. However, it is no restriction to put 8<1 since
B may be replaced by 1/8 in (14) without changing «
or k,/". When this substitution is made in (2), £ and \’
and &’ and N are interchanged with the effect that the
rectangles in the z plane of Fig. 1 are rotated by 90°.

The capacitance of the structure when two of the
opposing walls are magnetic will be useful later in deter-
mining its even-mode fringing capacitance. If the wall
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TABLE 1
DiMeNsIONS AND FRINGING CAPACITIES

fesf2 w
Zo t/b shb w/b-1) Cfo Cto Cte Cte
50 40000 59993 65990 12237 12246 68770 68796
60 40000 58844 33884 12309 12378 67854 68057
68 40000 53367 .11I03 12740 13103 63361 .64245

CD is to be magnetic, then in Fig. 1 we require the
capacity between E4 and BC. Now a=«, b=—1/8,
¢=1, and d=1/af. Then

1— o
k? = (15)
1+«
and the capacitance of one quadrant of the rectangle is

K'(ko)/K (ko).

One may specify, as above, the even-mode impedance
of the structure. Then £, is fixed and a one parameter
family of concentric rectangular conductors can be
found by selecting « and B to satisfy (15).

APPLICATIONS

With the aid of a digital computer, it is easy to obtain
the dimensions of the one parameter family of concentric
rectangles with a given characteristic impedance. Then
one of them can be selected for some desirable trait. For
example, Table I gives s/b, /b, and w/(b—1) for three
rectangular coaxial configurations with different values
of characteristic impedance, but with the same value of
£/b. It should be pointed out also that for these families,
the inner conductor is nearly equispaced from the outer
conductor.

This theory provides one with some additional in-
formation regarding the amount of interaction between
the even- and odd-mode fringing capacitances calculated
by Getsinger [5], for the case of an inner conductor of
finite thickness. Table I gives values of the odd- and
even-mode fringing capacities Cy, and Cy, using the exact
theory beside approximate values Cy,’” and Cy.' for the
same s/b and £/b obtained from formulas similar to
those used by Getsinger.

For w/(b—1t) =0.11, the error in (;, is 2.85 percent,
while the error in Cy, is 1.4 percent. This shows that
Cohn’s [6] criterion of w/(b—#) >0.35 for Cs to be un-
affected by proximity, is too cautious for equispaced
conductors when ¢>0. This is not surprising since
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Cohn’s criterion is based on the behavior of the fringing
capacities for {=0 and one might expect intuitively
that the interaction of fringing capacities would decrease
markedly as £ increases.
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New

Coupled Power Equations for Backward Waves

D. MARCUSE, MEMBER, IEEE

Abstract—Two waves traveling in opposite directions that are
coupled by a random coupling function are considered. These two
waves can be described in a standard way by coupled wave equations.
It is possible to derive coupled equations for the power carried by
these two waves. The form of the coupled power equations differs
depending on the assumptions that are made for the initial condi-
tions. The validity of the coupled power equations has been confirmed
by a computer-simulated experiment.

INTRODUCTION

OUPLED POWER equations for waves traveling
(g in opposite directions have been derived by Rowe
[1] under the assumption that the coupling func-
tion has a white-noise spectrum and that the initial con-
ditions for both waves have been specified at the far end
of the transmission lines. He thus assumes that the out-
put of mode (or line) 1 is specified at the end of the
guide and that no power is incident at the far end in
the reflected wave. His theory predicts the expected
value of the reflected wave at the input of the line, as
well as the expected values of the input waves that are
required to obtain the fixed output value of the inci-
dent mode.

If one considered it as an established fact that the
power exchange between the two waves can be treated
by adding power instead of amplitude, one would write
down intuitive coupled power equations that differ in
form from the coupled power equations that Rowe de-
rived. The question arises whether those intuitive equa-
tions are meaningless or how they are related to Rowe’s
equations. In order to gain insight into that problem,
we conducted a computer-simulated experiment tracing
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waves through ten simulated waveguides with random
coupling and compared the average output power ob-
tained from the experiment with the prediction of the
theories. The experiment can be done in several ways.
It is possible to launch a constant amplitude into each
of the ten random waveguides and to compute the
average values of the power output of the incident wave
at the far end of the guide, as well as the average power
of the reflected wave at the near end of the guide. The
result of this experiment agreed strikingly with the
intuitive coupled power equations, while it was defi-
nitely at odds with Rowe's equations. However, the
experimental conditions did not conform to Rowe’s
assumptions. We then changed the conditions requiring
that the output voltage of the incident wave have a
fixed value at the far end while no power enters the
reflected mode at the far end. The experimental values
now showed far larger scatter than in the first case, but
comparison indicated that they were in agreement with
Rowe’s equations while they definitely contradicted the
predictions of the intuitive equations if they were ap-
plied to this case.

The result of this experiment points to the conclusion
that different differential equations are required to de-
scribe the statistical outcome of coupled wave experi-
ments in which the two waves travel in opposite direc-
tions. One set of equations describes the situation in
which the input wave is known while no reflected wave
is allowed to enter at the far end. Another set of coupled
power equations describes the experimental situation in
which we require that the output wave has a definite
amplitude, while again no power is allowed to enter the
reflected mode at the far end.

In this paper both types of coupled power equations
are derived from the coupled wave equations using per-



