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The Exact Dimensions of a Family of Rectangular

Coaxial Lines with Given Impedance

HENRY J. RIBLET, FELLOW, IEEE

Abstract—The potential problem associated with a capacitor

bounded by concentric rectangles may be solved by conformably

mapping a certain L-shaped region onto the upper half plane. In cer-

tain cases, the integral, by which the Schwarz-Christoff el transforma-

tion may be expressed, can be evaluated in terms of two elliptic inte-

grals of the first kind. Then the odd- and even-mode impedance of

the related transmission line is readily found.

INTRODUCTION

ECENTLY, Conning [1] has drawn attention to

R
a solution to this problem for the special case of

square concentric conductors given by Bowman

[2], [3]. Now, Bowman used the fact that for concentric

square conductors, the integral associated with the

Schwarz–Christoffel transformation is a degenerate

hyperelliptic integral that can always be expressed as

the sum of two elliptic integrals of the first kind. There

is, however, for a given characteristic impedance, a one

parameter family of concentric rectangular conductors,

containing the square conductors as a special case,

whose dimensions may also be found in this way.

TRANSFORMATION OF THE INTEGRAL

We are concerned with mapping the upper half of the

Z~ plane onto the region of the z plane bounded by

OAB CDE as shown in Fig. 1 provided by the trans-

formation

su M~i du
z= ~ (1)

o d(l — ‘4)(1 + au)(l + @)(l — @’J)

Following Cayley [4], we introduce two new param-

eters:

k’ = (1 + @)/A k’ = (1 – @)/A (2)

with A = <(1 +a)(l +@). Of course, k9+k’z=Xz+h’2= 1,

and it is not difficult to invert (2) and find

“=(H) “=(+W ‘3)
If we now make the substitution

d;=
(X’ + k’)t

<1 – A’t’+ ~1 – k’t’
(4)
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Fig. 1. Z, t, and u planes.

and write ~= v’1 —Aztz and ~= <1 —kztz, one may

readily follow Cayley [4] and find that

(1 + au)(l + @u) = 4/(z + x)’ (5)

and

(1 – U)(1 – C2pu) = 4(1 – t’)/(z+ K)’. (6)

Moreover,

~tidu = 2(X’ + k’)3t2 dt/L . K o(L + ~)3
.—.

(7)

so that the integrand in (1) may be written:

(A’ + k’)’(~ – ~)

2(k’ – k’)~1 – t’-~.~

since ~2 —Kz = (~’z —k’z)t’. Thus

t

Z=M’ s{ dt

o <(1 – t’) (1 – X’t’)

dt
—

~(1 – t2)(1 – k’t’) }
. (8)

TRANSFORMATION OF THE PATH OF INTEGRATION

It will be found that by squaring twice, (4) can be

inverted and t can be expressed as

t’ = (1 + a)(l +kl)u

(1 + au)(l +@) “
(9)
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E we also have

-Ah l++++++;& ‘“’’’d’’’(’)“K’(’)‘~’d’’’)’)=‘K(’)
s

]Cx

dt/R(A) = jK’(A) .
D R(A) -surface

o

IE
Then

k:++% ..(,)..;,) 0
OA = Z(A) = j-‘dt/R(x) – J-‘dt/R(k)

-,1+1
ID

R(k)-surface

Fig. 2. Paths of integration.

Equations (8) and (9) then permit one to determine the

relationship between points in the u plane and z plane

in terms of well-known functions.

Equation (9) maps the upper half of the u plane into

the right half of the tplane where the points correspond-

ing to OAB CDE are as noted in Fig. 1. In addition, the

critical points of (9) play an important part in the trans-

formation. They occur for U2 = l/a@ where dt/du = O.
We notice that they correspond to values of t= l/A and

t = l/k, while A and B both correspond to t =1. The

problem of evaluating (1) as u traces out the real axis

in the u plane while avoiding the points OA M+ B CDiV–
E by means of small semicircles then becomes the prob-

lem of evaluating (8), while t traces out the boundary of

the left half t plane avoiding the points O–E as shown

in Fig. 1.

Now the integrands of the elliptic integrals in (8) are

not single-valued functions of t in the t plane. In order

to obtain unambiguous values for the integrals, it is con-

venient to plot the path of integration on the two Rie-

mann surfaces where the integrands are single valued.

If we denote R(A) = <(1 –t’)(1 –A2t2),then on the

R(X) surface of Fig. 2, R(A) is a single-valued function

of t because of the branch cuts between — 1/A and — 1

and 1 and l/L The same is true, of course, for R(k) as

a function of ton the R(k) surface of Fig. 2. Moreover,

the path of integration to be followed on both Riemann

surfaces is shown in Fig. 2. For the left-hand integral of

(8), the path of integration is entirely in the upper sheet

since no branch cuts are crossed and we agree to start

AB = ~ l“dt/R(X) + f ‘ dt/R(A) – f “kdt/R(k)
1 11A 1

s

1
— dt/R(k) = 2jK’(k)

1Ii

BC = J 0a’t/R(A) – J 0dt/R(k) = –K(k) – K(k)
1 1

CD= “SO-’” dt/R(X) – Jo-’” dt/R(k)

= –jK’(k) – jlf’(k)

DE = f l“dt/R(A) + f ‘dt/R(A) – ~ l“dt/R(k)
w 1/k m

J
m

— dt/R(k) = 2K(k)
1Jk

S
o

s

o
EO = dt/R(X) – dt/R(k)

jw +jm

= –jK’(A) + jK’(k) . (1.0)

In making these determinations, the integrals are line

integrals and the precise paths of integration, as shown

in Fig. 2, are taken into account. Moreover, .R@)

changes sign in going from a point in the upper sheet to

the point just below it in the lower sheet or in crossing a

branch cut in the same sheet.

THE GEOMETRY

Now in terms of real positive quantities when di-

rected upward or to the right,

in the upper sheet; however, for the right-hand integral, —
O/l = K(k) – K(k) m = K’(x) + K’(k)

half of the path is in the lower sheet, denoted by a

dashed line. ~B = 2K’(i) DE = 2K(k)

THE INTEGRATION ~ = K(X) + K(k) EO = K’(k) – K’(k). (11)

Adopting the convention that in the upper half plane

of the upper sheet Thus given any two numbers O <a <b whose product

s

1
cif? <1, we may in turn determine two numbers k <A< 1

dt/12(k) = K(k) that are the moduli of the complete elliptic integrals of

o the first kind determining the dimensions of concentric
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rectangles according to (11). Moreover these rectangles

are always realizable since K(A) is monotonically in-

creasing and K’(1) is monotonically decreasing with 1.

THE CHARACTERISTIC IMPEDANCE

It now remains to determine the capacity per unit

length of the structure. It is well known that total ca-

pacity is invariant under conformal transformation so

we have to determine the upper half-plane capacity of

section EA with respect to section BD (in the u plane of

Fig. 1). This may be accomplished by transforming the

upper half u plane into a rectangle by the transforma-

tion t =snzw [3, pp. 58 and 59]. Then the upper half-

plane capacity C is

K’(kO)
c=—

K(kJ

where

~,=(b–a)(d–c)
0

(d– b)(c– u)

with a= —l/a, b= —1/~, c=l, and d=l/o@. So,

k,=(~–a)(l–a~)
o

@(l + a)’ “
(12)

The characteristic impedance 20 of the transmission line

is then given by

376.7 K(kJ
20 =

4 K’(kJ
= 94.18 K(kO)/K’(kO). (13)

Now the two parameters a and ~ will not determine

all concentric rectangular coaxial sections, but if we

specify the characteristic impedance, (13) determines

ko and (12) then defines a one parameter family of

rectangular coaxial lines with the given characteristic

impedance. If ~ = 1, the rectangles become concentric

squares and the solution of Bowman results. Since ko’z
= 1 –ko2, (12) becomes

kof’ =
CT(I + ,@2

B(I + a)’ “
(14)

Since ko’ <1, itfollows readily from (14) that for ~> O,

there is always an a such that O <a <~ and, from (12),

that C@< 1. Thus in (12) or (14) ~ may be any positive

number. However, it is no restriction to put ~ ~ 1 since

~ may be replaced by l/@ in (14) without changing a

or ko”. When this substitution is made in (2), k and A’

and kf and h are interchanged with the effect that the

rectangles in the z plane of Fig. 1 are rotated by 90°.

The capacitance of the structure when two of the

opposing walls are magnetic will be useful later in deter-

mining its even-mode fringing capacitance. If the wall

TABLE I

DIMENSIONS AND FRINGING CAPACITIES

Zo

50

60

68

t/b + w/(b-t) Cfo Cjo %e ‘3.

.40000 .59993 .65990 1.2237 1.2246 .68770 .68796

40000 .58844 .33884 !.2309 1.2378 .67854 .68057

$0000 .53367 .1[103 1.2740 1.3103 .63361 .64245

CD is to be magnetic, then in Fig. 1 we require the

capacity between EA and B C. Now a = w, b = —1/P,

c =1, and d = l/c@. Then

l–ap
k~2 =

I+a
(15)

and the capacitance of one quadrant of the rectangle is

K’(k,)/K(k.).
One may specify, as above, the even-mode impedance

of the structure. Then k. is fixed and a one parameter

family of concentric rectangular conductors can be

found by selecting a and D to satisfy (15).

APPLICATIONS

With the aid of a digital computer, it is easy to obtain

the dimensions of the one parameter family of concentric

rectangles with a given characteristic impedance. Then

one of them can be selected for some desirable trait. For

example, Table I gives s/b, t/b, and w/(b —t) for three

rectangular coaxial configurations with different values

of characteristic impedance, but with the same value of

t/b. It should be pointed out also that for these families,

the inner conductor is nearly equispaced from the outer

conductor.

This theory provides one with some additional in-

formation regarding the amount of interaction between

the even- and odd-mode fringing capacitances calculated

by Getsinger [5], for the case of an inner conductor of

finite thickness. Table I gives values of the odd- and

even-mode fringing capacities Cfo and Cf. using the exact

theory beside approximate values Cfo’ and Cfe’ for the

same s/b and t/b obtained from formulas similar to

those used by Getsinger.

For w/(b –t) = 0.11, the error in Cf. is 2.85 percent,

while the error in Cf. is 1.4 percent. This shows that

Cohn’s [6] criterion of w/(b –t) >0.35 for Cf to be un-

affected by proximity, is too cautious for equispaced

conductors when t >0. This is not surprising since
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Coupled Power Equations for Backward Waves

D. MARCUSE, MEMBER, IEEE

Absfracf—Two waves traveling in opposite directions that are

coupled by a random coupling function are considered. These two

waves can be described in a standard way by coupled wave equations.

It is possible to derive coupled equations for the power carried by

these two waves. The form of the coupled power equations cliff ers

depending on the assumptions that are made for the initial condi-

tions. The validity of the coupled power equations has been confirmed

by a computer-simulated experiment.

INTRODUCTION

C
OUPLED POWER equations for waves traveling

in opposite directions have been derived by Rowe

[1] under the assumption that the coupling func-

tion has a white-noise spectrum and that the initial con-

ditions for both waves have been specified at the far end

of the transmission lines. He thus assumes that the out-

put of mode (or line) 1 is specified at the end of the

guide and that no power is incident at the far end in

the reflected wave. His theory predicts the expected

value of the reflected wave at the input of the line, as

well as the expected values of the input waves that are

required to obtain the fixed output value of the inci-

dent mode.

If one considered it as an established fact that the

power exchange between the two waves can be treated

by adding power instead of amplitude, one would write

down intuitive coupled power equations that differ in

form from the coupled power equations that Rowe de-

rived. The question arises whether those intuitive equa-

tions are meaningless or how they are related to Rowe’s

equations. In order to gain insight into that problem,

we conducted a computer-simulated experiment tracing
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waves through ten simulated waveguides with random

coupling and compared the average output power ob-

tained from the experiment with the prediction of the

theories. The experiment can be done in several ways.

It is possible to launch a constant amplitude into each

of the ten random waveguides and to compute the

average values of the power output of the incident wave

at the far end of the guide, as well as the average power

of the reflected wave at the near end of the guide. The

result of this experiment agreed strikingly with the

intuitive coupled power equations, while it was defi-

nitely at odds with Rowe’s equations. However, the

experimental conditions did not conform to Rowe’s

assumptions. We then changed the conditions requiring

that the output voltage of the incident wave have a

fixed value at the far end while no power enters the

reflected mode at the far end. The experimental values

now showed far larger scatter than in the first case, but

comparison indicated that they were in agreement with

Rowe’s equations while they definitely contradicted the

predictions of the intuitive equations if they were ap-

plied to this case.

The result of this experiment points to the conclusion

that different differential equations are required to de-

scribe the statistical outcome of coupled wave experi-

ments in which the two waves travel in opposite direc-

tions. One set of equations describes the situation in

which the input wave is known while no reflected wave

is allowed to enter at the far end. Another set of coupled

power equations describes the experimental situation in

which we require that the output wave has a definite

amplitude, while again no power is allowed to enter the

reflected mode at the far end.

In this paper both types of coupled power equations

are derived from the coupled wave equations using per-


